亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频

Search for the product you are looking for
研發(fā)中心

News

Slide down

Guidelines for Selecting Humidity Test Methods in High-Low Temperature Cyclic Humidity Chambers —A Systematic Decision Based on Specimen Characteristics and Failure Mechanisms

Source:LINPIN Time:2025-09-25 Category:Industry News

In generic reliability standards such as GB/T 2423, IEC 60068 and MIL-STD-810, “damp heat” is treated as an independent climatic stress. The goal is not merely to verify moisture resistance, but to accelerate and expose failure modes triggered by water adsorption, condensation, “breathing” and electrochemical migration. Although a high-low temperature cyclic humidity chamber (hereafter “the chamber”) can deliver both steady-state and cyclic profiles, an ill-chosen method may either inflate test costs through over-testing or misalign failure mechanisms and distort field-failure predictions. This paper reviews the physics, acceleration factors and applicability boundaries of Steady-state Damp Heat (SSDH) and Cyclic Damp Heat (CDH) from an engineering perspective, and provides actionable selection rules for R&D, test and quality engineers.

Physical Models and Acceleration Mechanisms
2.1 Steady-state Damp Heat (SSDH)
Stress signature: constant temperature and humidity (e.g. 40 °C/93 %RH, 85 °C/85 %RH).
Mass-transfer path: three-stage “adsorption–diffusion–equilibrium”; equilibrium moisture content follows Henry’s adsorption isotherm.
Dominant failures:
a) Dielectric constant and loss tangent of insulators increase → breakdown voltage drops.
b) Electrochemical migration (ECM) on metallisation or PCB copper → dendritic short.
c) Glass-transition temperature of rubbers and sealants decreases → permanent compression set.
Acceleration model: Arrhenius–Peck
AF = exp[(Ea/k)(1/Tuse?1/Ttest)] × (RHtest/RHuse)^n
where n = 2–3, Ea = activation energy (eV), k = Boltzmann constant.
2.2 Cyclic Damp Heat (CDH)
Stress signature: 24-h cycles of “heat-up – high T/RH – cool-down – low T/high RH”, e.g. 25 → 55 → 25 °C at ≥ 95 %RH; forced condensation during ramps.
Mass-transfer path: pressure differential drives “breathing”; vapour condenses on internal surfaces during cool-down and re-evaporates during heat-up, producing repeated liquid/vapour phase change.
Dominant failures:
a) Aluminium wire corrosion inside sealed relays/IC packages → open circuit.
b) Delamination at coating–metal or potting–substrate interfaces → capillary channels.
c) Micro-cracks in fibre-reinforced composites due to differential swelling/shrinkage.
Acceleration metric: number of condensation events; empirically one condensation ≈ 8–12 h SSDH corrosion increment.
Specimen Taxonomy vs. Test Method
3.1 By architecture
Class A – Solid homogeneous dielectrics (phenolic rods, ceramic substrates, potted transformers).
Mass transfer: surface adsorption only, no breathing space.
Recommendation: SSDH; lifetime can be quantified directly with Peck model.
Class B – Cavity/sealed enclosures (IP67 controllers, MIL connectors, PV junction boxes).
Mass transfer: significant breathing; repeated internal condensation.
Recommendation: CDH, optionally with sub-cycles down to ?10 °C or ?40 °C to amplify thermal mismatch.
Class C – Surface coating systems (automotive sensor plating, conformal coatings).
If the concern is bulk moisture resistance of the coating itself → SSDH.
If the concern is coating–metal interface blistering → CDH.
3.2 By moisture-ingress mechanism
Adsorption/diffusion-controlled (polymers): failure driver = volume resistivity drop.
Criterion: moisture uptake < 0.5 % at 23 °C/50 %RH equilibrium → SSDH.
Breathing/condensation-controlled (sealed cavities): failure driver = internal corrosion.
Criterion: internal volume ≥ 5 cm3 and sealing ≤ IP65 → CDH.
Industrial Case Studies
4.1 New-energy vehicle OBC
Construction: die-cast Al housing, internal potting, power device on thermal pad.
Field failure: DC-DC transformer core rust → audible noise.
Root cause: thermal pad and Al housing form micro-gap; diurnal temperature swing induces breathing.
Test comparison:
SSDH 85 °C/85 %RH, 1000 h – no failure.
CDH 55 °C/95 %RH ? 25 °C/95 %RH, 10 cycles – red rust visible on core.
Conclusion: CDH reproduces field failure within two weeks, cutting validation time by 60 %.
4.2 5G AAU antenna radome
Material: glass-fibre reinforced polyurethane, UV-resistant top-coat.
Failure mode: wave transmittance drop after damp heat → VSWR alarm.
Mechanism: moisture diffusion raises resin permittivity; CDH-induced micro-cracks increase scattering.
Selected profile: IEC 60068-2-30 CDH (55 ? 25 °C, 6 cycles) plus 2 h UV sub-cycle; deviation vs. one-year Hainan outdoor exposure < 8 %. Decision Tree Step 1 – Sealing assessment If IP ≥ X7 and cavity ≥ 5 cm3 → CDH branch; Else → SSDH branch. Step 2 – Dominant failure mechanism Insulation degradation → SSDH; Corrosion/delamination → CDH. Step 3 – Field environment Diurnal ΔT ≥ 20 °C and RH > 85 % → CDH;
Long-term steady high humidity (e.g. indoor tropics) → SSDH.
Step 4 – Lifetime model requirement
Quantitative MTBF required → SSDH (Peck model mature);
Pass/fail needed quickly → CDH faster.
Test Parameter Essentials
6.1 SSDH
T tolerance: ±2 °C; RH tolerance: ±3 %RH.
Air speed: 0.5–1.0 m/s to avoid stagnant boundary layer.
Intermediate read-outs: 168 h, 500 h, 1000 h; 2 h recovery at 25 °C/50 %RH before insulation-resistance test.
6.2 CDH
Ramp rate: 0.5–1 °C/min to ensure sufficient pressure differential.
Condensation control: raise absolute humidity or light fog during heat-up; droplet diameter on inner wall ≥ 2 mm.
Low-temperature dwell: extend to ?10 °C or ?40 °C for 1 h if product claims low-T operation.
Cycle count: 10 for automotive, 21 for rail/military applications.
Common Pitfalls
Pitfall 1: “CDH is always more severe and can replace SSDH.”
Correction: CDH works for sealed systems; for solid dielectrics it may add irrelevant thermal-cycle fatigue and cause over-test.
Pitfall 2: “Raising RH to 98 %RH shortens time further.”
Correction: RH > 95 %RH produces free water droplets that drip on specimens, creating local over-corrosion inconsistent with field conditions and unsuitable for modelling.
Pitfall 3: “Any condensation seen equals valid test.”
Correction: Condensation on chamber wall ≠ specimen breathing; confirm with viewing window or borescope that droplets form on the specimen/internal surfaces.
Closing Remarks
Humidity testing uses the polar water molecule as a catalyst to replicate, in a compressed time frame, corrosion, ageing and electrical drift that a product may encounter during its life. SSDH and CDH are not merely ranked by “severity”; they address two distinct mass-transfer and failure routes. Only by combining specimen architecture, sealing level, material polarity and field conditions with quantitative acceleration models can a scientific, economical and traceable choice be made. It is recommended that a DFR (Design for Reliability) team be engaged at the test-plan review stage to simulate sealing topology, moisture-sorption curves and critical failure modes, thereby reducing physical test iterations and R&D cost. For assistance in profile tailoring, lifetime extrapolation or failure analysis, joint validation with chamber manufacturers or third-party reliability laboratories is encouraged to ensure high homology between test data and field failures.

News Recommendation
When using a high-low temperature alternating damp heat test chamber, the appropriate damp heat test method should be selected based on the material characteristics and testing requirements.
The composite salt spray test chamber breaks through the limitations of traditional constant-value tests. By cycling through salt spray, drying, and humidity-heat conditions, it accurately simulates the outdoor corrosion environment.
As a large, high-precision environmental simulation testing instrument, the salt spray test chamber requires careful attention during installation to ensure its proper operation and accurate testing.
If a constant temperature and humidity test chamber malfunctions due to improper operation or lack of maintenance, it will not only affect the progress of work but also incur costs much higher than those of regular maintenance.
Analysis of Fault Alarm Principles in Constant Temperature and Humidity Chambers
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn
亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频
国产精品久久久久aaaa樱花| 久久久久久欧美| 亚洲日韩欧美视频一区| 日韩视频在线一区二区| 99ri日韩精品视频| 亚洲伊人网站| 久久精品系列| 欧美精品亚洲精品| 国产精品嫩草久久久久| 国产一区二区三区四区| 最新国产成人av网站网址麻豆 | 国产色综合天天综合网| 在线日韩日本国产亚洲| 宅男精品视频| 久久久7777| 欧美日韩精品免费观看视一区二区| 国产精品久久久久免费a∨大胸| 国精品一区二区| 99国产精品国产精品久久| 香蕉久久夜色精品国产| 欧美gay视频| 国产美女扒开尿口久久久| 亚洲电影下载| 亚洲欧美福利一区二区| 欧美ed2k| 国产欧美日韩精品专区| 亚洲国产一区二区三区青草影视| 亚洲一区国产视频| 免费日韩av片| 国产日产亚洲精品系列| 亚洲精品日韩一| 欧美自拍偷拍午夜视频| 欧美日韩亚洲网| 一区二区三区自拍| 亚洲一区二区三区在线| 欧美福利视频在线| 国产三级欧美三级| 一二三区精品福利视频| 久久亚洲不卡| 国产农村妇女毛片精品久久麻豆| 亚洲伦理在线观看| 久久婷婷丁香| 国产乱码精品一区二区三区五月婷| 亚洲日本中文字幕| 久久福利资源站| 国产精品久久久一区二区三区| 亚洲国产精品日韩| 欧美在线观看网址综合| 国产精品电影观看| 亚洲日本欧美| 久久久精品五月天| 国产伦精品一区二区| 一区二区三区精品国产| 免费观看成人| 国内成人精品视频| 西西裸体人体做爰大胆久久久| 欧美人成在线| 亚洲国产婷婷| 久久久最新网址| 国产精品一区二区你懂的| 夜夜嗨av一区二区三区四季av| 女女同性精品视频| 一区二区三区自拍| 久久国产视频网| 国产精品一二一区| 亚洲视频第一页| 欧美日本韩国一区| 亚洲精品美女在线| 欧美jizz19性欧美| 亚洲第一久久影院| 久热综合在线亚洲精品| 国产综合欧美在线看| 性欧美在线看片a免费观看| 国产精品豆花视频| 宅男精品视频| 欧美三区免费完整视频在线观看| 亚洲精品资源| 欧美精品日本| 99成人精品| 欧美日韩国产影院| 亚洲作爱视频| 欧美视频一区二区三区…| 夜夜嗨av一区二区三区| 欧美日韩免费观看一区=区三区| 亚洲麻豆一区| 欧美裸体一区二区三区| 日韩视频免费观看| 欧美日韩视频在线一区二区| 在线亚洲一区二区| 欧美性jizz18性欧美| 亚洲性感激情| 国产九区一区在线| 久久久精彩视频| 狠狠色丁香婷婷综合影院| 久久久久国色av免费看影院| 又紧又大又爽精品一区二区| 免费观看欧美在线视频的网站| 亚洲黄色有码视频| 欧美理论电影网| 一区二区三区成人精品| 国产精品久久国产三级国电话系列| 亚洲欧美日韩视频二区| 国产视频一区二区在线观看| 久久久久久久久一区二区| 亚洲电影一级黄| 欧美区日韩区| 亚洲一区美女视频在线观看免费| 国产免费成人av| 久久久久久久久一区二区| 亚洲黄色影院| 欧美色大人视频| 欧美一区2区三区4区公司二百| 国内精品国产成人| 欧美18av| 一区二区三区高清视频在线观看| 国产精品免费在线| 久久久久亚洲综合| 亚洲人成在线观看网站高清| 欧美午夜性色大片在线观看| 欧美一级成年大片在线观看| 在线成人小视频| 欧美日韩国产经典色站一区二区三区| 亚洲一级黄色片| 国产亚洲精品一区二555| 免费看黄裸体一级大秀欧美| 99精品国产一区二区青青牛奶| 国产精品亚洲成人| 久久只精品国产| 99国产精品久久久| 国产欧美一区二区三区久久| 麻豆精品在线视频| 亚洲视频综合| 狠狠色噜噜狠狠色综合久 | 国产日韩精品一区| 蜜桃av噜噜一区二区三区| 一区二区久久| 国内精品免费在线观看| 欧美久久在线| 久久av一区| 亚洲美女网站| 国产亚洲综合精品| 欧美日韩精品免费看| 久久精品国产99| 亚洲作爱视频| 在线观看欧美黄色| 国产精品福利影院| 久久亚洲精品网站| 亚洲影院免费观看| 亚洲精品1区2区| 国产日韩欧美不卡| 欧美日产一区二区三区在线观看| 久久疯狂做爰流白浆xx| 中文国产一区| 亚洲成人在线视频播放| 国产伦理一区| 欧美日韩精品免费观看视一区二区| 久久精品日产第一区二区| 在线视频中文亚洲| 亚洲黄色天堂| 国产综合色产| 国产精品国产三级国产aⅴ浪潮| 蜜桃精品久久久久久久免费影院| 亚洲欧美一区二区三区在线| 亚洲日本无吗高清不卡| 狠狠综合久久av一区二区老牛| 欧美午夜精品伦理| 欧美风情在线观看| 久久在线免费视频| 欧美一级一区| 亚洲一区国产一区| 一区二区三区成人| 亚洲精品九九| 精品电影一区| 国产女人精品视频| 欧美色欧美亚洲高清在线视频| 欧美凹凸一区二区三区视频| 久久精品视频免费观看| 午夜精品久久久久| 中文av一区特黄| 亚洲另类黄色| 亚洲国产日本| 亚洲观看高清完整版在线观看| 国内免费精品永久在线视频| 国产精品一级二级三级| 欧美性猛交一区二区三区精品| 欧美女同在线视频| 欧美大胆a视频| 美女尤物久久精品| 久久亚洲综合色| 久久精品在线| 久久国产一区| 欧美一区二区三区在线观看| 先锋影音久久久| 亚洲欧美国产高清va在线播| 亚洲一区成人| 在线一区视频| 一区二区三区精品久久久| 99精品99久久久久久宅男| 99国产一区| 99精品99| 一区二区成人精品| 一区二区三区精密机械公司 | 激情视频亚洲| 好吊一区二区三区|