亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频

Search for the product you are looking for
研發中心

News

Slide down

Failure Mechanisms of Cooling Loss in Thermal Shock Test Chambers ——A Systematic Analysis Based on the Reverse Carnot Cycle

Source:LINPIN Time:2025-09-04 Category:Industry News

 

Thermal shock test chambers are indispensable in reliability qualification for electronics, aerospace, and automotive industries. Once the “no-cooling” fault occurs, the test sequence is immediately interrupted and secondary damage to the specimen may follow. Using the reverse Carnot cycle as the theoretical backbone and integrating years of field-maintenance data, this paper systematically reviews the macroscopic manifestations, microscopic mechanisms and discriminating methods of cooling loss, and puts forward actionable preventive-maintenance strategies. The findings provide laboratory operators with rapid fault-location and handling guidelines, and also offer equipment manufacturers a reference for reliability-oriented design.

Thermal Shock Test Chambers
1?Introduction
By rapidly shuttling specimens between high- and low-temperature zones, thermal shock chambers expose latent defects through extreme thermal gradients [1]. Continuous low-temperature holding relies on the correct operation of the reverse-Carnot refrigeration cycle. When this cycle is disturbed, cooling capacity is lost. Although manufacturers perform multiple verifications before shipment, long-term operation under grid disturbances, mechanical wear and refrigerant ageing can still trigger sudden cooling failures. Clarifying the failure mechanisms and establishing a standardized troubleshooting workflow are therefore essential for ensuring test accuracy and minimizing downtime.
2?The Reverse Carnot Cycle and System Architecture
2.1?Cycle Theory
The reverse Carnot cycle comprises two isothermal and two adiabatic processes [2]. In a test chamber the cycle is decomposed into four stages:
(1) Adiabatic compression: low-pressure refrigerant vapour is compressed to high pressure and temperature;
(2) Isobaric heat rejection: superheated gas condenses in the condenser, transferring heat to the coolant medium (air or water);
(3) Adiabatic expansion: liquid refrigerant passes through a throttling device (capillary or electronic expansion valve) and experiences a sharp pressure and temperature drop;
(4) Isobaric heat absorption: low-pressure two-phase refrigerant evaporates in the evaporator, removing heat from the specimen and chamber walls before returning to the compressor.
2.2?System Configuration
A typical three-zone chamber consists of a hot zone, a cold zone and a specimen transfer basket. The refrigeration system is usually a two-stage cascade:
(1) High-temperature stage: R404A or R507 for precooling and medium-temperature holding;
(2) Low-temperature stage: R23 or R508B for deep cooling below ?55 °C;
(3) Switching devices: hot-gas-bypass solenoid valve, intermediate heat exchanger and check valves for inter-stage coupling and load matching.
3?Macroscopic Symptoms of Cooling Failure
3.1?Temperature Anomaly
When the set point is ?40 °C but the chamber remains above ?20 °C after 30 min and the cooling rate is <1 °C·min?1, insufficient capacity is diagnosed.
3.2?Pressure Anomaly
High-side pressure <1.0 MPa or negative low-side pressure indicates cycle imbalance. 3.3?Compressor Behaviour Motor current drops >20 % below rated value or the protector trips repeatedly.
4?Systematic Analysis of Failure Mechanisms
4.1?Compressor Faults
4.1.1?Electrical Factors
Voltage sags or harmonic distortion can erode contactor contacts and prevent coil pull-in; phase loss raises winding temperature and triggers the internal thermal protector.
4.1.2?Mechanical Factors
Wear of scroll tip seals, broken piston rings or increased crankshaft eccentricity reduce volumetric efficiency. Discharge temperature decreases while suction temperature increases—opposite to normal behaviour.
4.1.3?Lubrication Failure
Carbonized or emulsified refrigerant oil destroys the oil film; metal-to-metal contact leads to seizure. Oil level and colour observed through the sight glass provide early warning.
4.2?Refrigerant Anomalies
4.2.1?Leakage
Micro-cracks in welds, aged gaskets or cracked valve stems (especially of the hot-gas-bypass solenoid) cause gradual loss. When the charge falls below 80 % of design, evaporator superheat rises sharply and suction pressure collapses.
4.2.2?Ice and Dirt Blockage
Moisture >50 ppm forms ice crystals at the expansion orifice; particulate debris causes oil slugs. Both manifest as a sudden evaporator-pressure drop and frequent compressor cycling.
4.2.3?Non-condensables
Inadequate evacuation leaves residual air, raising condensing pressure and compressor power while lowering cooling rate.
4.3?Control System Faults
4.3.1?Sensor Drift
Ageing temperature or pressure sensors yield erroneous feedback, causing the PID algorithm to issue wrong commands.
4.3.2?Program Logic Error
If the hot-gas-bypass valve remains open during the low-temperature dwell, evaporating temperature rises and the set point cannot be maintained.
5?Diagnostic and Localization Procedure
5.1?Preliminary Checks
(1) Power: three-phase unbalance <2 %, no phase loss; (2) Display: log alarm codes and compressor run time; (3) Sight glass: continuous bubbles >5 s·min?1 indicate undercharge.
5.2?Combined Pressure–Temperature Test
Digital manifold gauges measure high- and low-side pressures. With ambient dry-bulb temperature, calculate subcooling (normal 3–5 K) and superheat (normal 6–8 K). Subcooling <2 K plus superheat >15 K indicates refrigerant shortage or expansion-valve misadjustment.
5.3?Infrared Thermography
Scan compressor shell, condenser outlet and evaporator inlet; abnormal temperature gradients reveal potential leaks or blockages.
5.4?Vacuum–Pressure Leak Test
After refrigerant recovery, pressurize with nitrogen to 1.8 MPa; pressure drop <0.03 MPa in 24 h is acceptable. If exceeded, locate leaks with an electronic halogen detector.
6?Preventive-Maintenance Strategy
6.1?Refrigerant Management
(1) Metered charging: refill to nameplate ±5 g using an electronic scale in closed-loop control;
(2) Moisture control: replace drier filters every 1000 h; target moisture <20 ppm. 6.2?Compressor Maintenance (1) Every 2000 h measure winding insulation with a 500 V megger (target >100 MΩ);
(2) Every 4000 h analyse oil; replace if acid number >0.05 mgKOH·g?1;
(3) Every 8000 h renew synthetic oil of identical grade as per OEM specification.
6.3?Valves and Piping Maintenance
(1) Replace the entire valve body when the solenoid stem shows cracks—welding repair is prohibited;
(2) Perform annual penetrant testing (PT) on stainless-steel brazed joints; repair cracks and re-solution-treat.
6.4?Control-Program Optimization
Implement “pressure–temperature dual-variable redundancy” in the PLC: if both temperature and pressure sensors indicate anomalies for >30 s, the system shuts down and outputs a fault code, avoiding false trips from single-sensor drift.
Cooling loss in thermal shock test chambers is usually the result of coupled compressor degradation, refrigerant-cycle anomalies and control-system faults. Using the reverse Carnot cycle as a theoretical framework, a three-dimensional fault tree (electrical–mechanical–refrigerant) reduces fault-location time to within 30 minutes. Standardized leak detection, metered charging, preventive replacement of critical parts and logic upgrades can raise the system MTBF from 4000 h to over 7000 h, providing sustained technical assurance for environmental reliability testing.

News Recommendation
Thermal shock test chambers, renowned for their outstanding stability and reliability, are extensively employed in the testing of automation components, telecommunications equipment, plastics, aerospace hardware, chemical materials, LEDs, and electronic devices.
The UV-accelerated weathering test chamber is a key item of equipment used to simulate solar radiation and perform accelerated ageing evaluations on materials. Its electrical system must not only drive high-power UV sources but also acquire and control signals for temperature, humidity, spray, etc.
For high and low temperature humidity test chambers, daily troubleshooting of abnormalities is essential.
Cold and thermal shock test chamber on the market is divided into two categories, a two-compartment type, including high-temperature region and low-temperature region, the test object were in two different temperatures in the area of the test, hot and cold alternating test; the other is a three-compartment type, in addition to high-temperature and low-temperature areas, there is also a test area, and the two-compartment different is that the three-compartment does not need to be directly in the test area for the test, only need to be through the air compression method
The composite salt spray test chamber breaks through the limitations of traditional constant-value tests. By cycling through salt spray, drying, and humidity-heat conditions, it accurately simulates the outdoor corrosion environment.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn
亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频
欧美日韩成人综合在线一区二区 | 亚洲欧美福利一区二区| 模特精品裸拍一区| 国内揄拍国内精品久久| 午夜精品在线视频| 亚洲已满18点击进入久久| 欧美日韩国产色视频| 国内精品久久久| 久久www免费人成看片高清 | 欧美激情综合亚洲一二区| 在线看日韩av| 久久夜色精品国产亚洲aⅴ| 国产亚洲日本欧美韩国| 欧美怡红院视频一区二区三区| 国产精品午夜春色av| 亚洲永久视频| 国产伦精品免费视频| 午夜视频在线观看一区| 国产欧美一区二区在线观看| 亚洲一区二区三区四区中文| 欧美午夜免费电影| 亚洲无亚洲人成网站77777 | 国产欧美日韩在线| 午夜在线a亚洲v天堂网2018| 国产欧美精品在线观看| 午夜影院日韩| 国产综合久久久久久鬼色| 久久国产精品一区二区三区| 狠狠色狠色综合曰曰| 久久久亚洲精品一区二区三区| 精品不卡一区| 欧美成人黑人xx视频免费观看| 亚洲欧洲一二三| 欧美日韩精品一区二区三区| 亚洲视频在线看| 国产欧美日韩91| 久久久久久亚洲精品不卡4k岛国| 激情欧美一区二区三区在线观看| 免费欧美日韩| 99国产精品一区| 国产精品免费观看视频| 欧美一区三区二区在线观看| 极品少妇一区二区| 欧美国产先锋| 亚洲香蕉在线观看| 国产欧美日韩视频| 久久综合伊人77777麻豆| 亚洲精品欧美极品| 国产精品美女久久久久aⅴ国产馆| 欧美在线观看视频一区二区三区| 激情五月综合色婷婷一区二区| 欧美高清你懂得| 亚洲伊人网站| 国产综合色产| 欧美区高清在线| 午夜精品免费在线| 在线日本成人| 欧美色网在线| 久久久www免费人成黑人精品| 亚洲精品1区2区| 国产精品成人在线观看| 久久国产黑丝| 亚洲人成网站777色婷婷| 国产精品免费看| 麻豆av一区二区三区| 在线亚洲精品| 韩国成人精品a∨在线观看| 欧美激情精品久久久久久黑人 | 老牛国产精品一区的观看方式| 99精品国产在热久久| 国产精品综合久久久| 欧美成人a∨高清免费观看| 亚洲一区二区综合| 1024日韩| 国产伦精品一区二区三区四区免费 | 久久成人精品电影| 亚洲精品美女91| 国产欧美婷婷中文| 欧美凹凸一区二区三区视频| 亚洲欧美日韩综合| 亚洲区一区二| 国产亚洲一本大道中文在线| 欧美日本不卡视频| 亚洲免费网站| 欧美精品啪啪| 国产精品久久午夜| 亚洲色图制服丝袜| 欧美一区亚洲一区| 免费在线亚洲欧美| 国产精品精品视频| 国内精品模特av私拍在线观看| 国产色视频一区| 一色屋精品视频在线看| 99精品久久| 国产精品最新自拍| 亚洲激情视频在线观看| 国产日产亚洲精品| 欧美巨乳波霸| 久久久久青草大香线综合精品| 中文在线不卡| 亚洲茄子视频| 在线观看91久久久久久| 国产目拍亚洲精品99久久精品| 欧美日韩久久精品| 美女精品在线观看| 欧美在线高清| 亚洲免费小视频| 99在线精品观看| 亚洲日本电影在线| 伊人狠狠色j香婷婷综合| 国产欧美一区二区精品忘忧草| 欧美三级电影大全| 欧美精品久久久久久久久久| 久久中文在线| 久久黄金**| 性色av一区二区三区| 亚洲主播在线观看| 一区二区三区日韩精品视频| 亚洲精品国产精品乱码不99按摩 | 国产日韩欧美日韩| 中文精品一区二区三区| 欧美.com| 精品999在线播放| 欧美一区二区精品久久911| 欧美日韩在线一二三| 91久久国产综合久久| 欧美激情精品久久久久久大尺度| 欧美一进一出视频| 亚洲欧美在线一区| 亚洲欧洲日本国产| 国产久一道中文一区| 午夜精品福利视频| 国产精品乱码一区二区三区| 亚洲午夜久久久| 在线国产日韩| 国产欧美视频一区二区三区| 欧美日韩国产91| 一区二区三区高清视频在线观看| 国产精品高清网站| 亚洲在线国产日韩欧美| 国产一区二区三区免费观看| 欧美激情一二区| 久久久综合网站| 亚洲私人黄色宅男| 国产精品视频第一区| av成人免费| 欧美日韩亚洲国产精品| 亚洲国产色一区| 久久躁狠狠躁夜夜爽| 亚洲国产婷婷香蕉久久久久久| 欧美大成色www永久网站婷| 亚洲视频你懂的| 国产日韩精品久久| 欧美黄色免费| 小嫩嫩精品导航| 99热免费精品| 国内精品久久久久久久影视蜜臀| 欧美日韩影院| 免费成人在线观看视频| 美女诱惑一区| 亚洲国产精品久久久久| 欧美日韩中文| 性欧美大战久久久久久久久| 国产精品社区| 久久成人这里只有精品| 亚洲午夜免费视频| 亚洲国产第一| 国产精品一区一区三区| 久久一日本道色综合久久| 午夜精品av| 亚洲视频一区二区| 亚洲日韩欧美视频一区| 国产精品狠色婷| 欧美中文字幕在线播放| 亚洲伦理久久| 激情久久久久久久久久久久久久久久| 欧美激情欧美狂野欧美精品| 久久婷婷色综合| 中日韩美女免费视频网址在线观看| 国产午夜精品久久久久久免费视 | 一本色道久久综合| 国产精品乱码妇女bbbb| 久久久国产精品一区二区三区| 一区二区三区国产精华| 国产精品家庭影院| 欧美精品xxxxbbbb| 女人色偷偷aa久久天堂| 久久免费高清视频| 亚洲欧美日韩另类精品一区二区三区| 亚洲一区二区视频在线| 亚洲视频欧美视频| 久久aⅴ国产欧美74aaa| 久久国产精品亚洲va麻豆| 亚洲欧美欧美一区二区三区| 亚洲人成人一区二区在线观看| 国内成人精品一区| 国产精品视频1区| 久热综合在线亚洲精品| 欧美电影免费观看高清完整版| 久久精品中文字幕一区| 亚洲在线一区二区| 亚洲欧美日韩精品在线| 久久久国产一区二区| 欧美xx视频|