亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频

Search for the product you are looking for
研發中心

News

Slide down

Failure Mechanisms of Cooling Loss in Thermal Shock Test Chambers ——A Systematic Analysis Based on the Reverse Carnot Cycle

Source:LINPIN Time:2025-09-04 Category:Industry News

 

Thermal shock test chambers are indispensable in reliability qualification for electronics, aerospace, and automotive industries. Once the “no-cooling” fault occurs, the test sequence is immediately interrupted and secondary damage to the specimen may follow. Using the reverse Carnot cycle as the theoretical backbone and integrating years of field-maintenance data, this paper systematically reviews the macroscopic manifestations, microscopic mechanisms and discriminating methods of cooling loss, and puts forward actionable preventive-maintenance strategies. The findings provide laboratory operators with rapid fault-location and handling guidelines, and also offer equipment manufacturers a reference for reliability-oriented design.

Thermal Shock Test Chambers
1?Introduction
By rapidly shuttling specimens between high- and low-temperature zones, thermal shock chambers expose latent defects through extreme thermal gradients [1]. Continuous low-temperature holding relies on the correct operation of the reverse-Carnot refrigeration cycle. When this cycle is disturbed, cooling capacity is lost. Although manufacturers perform multiple verifications before shipment, long-term operation under grid disturbances, mechanical wear and refrigerant ageing can still trigger sudden cooling failures. Clarifying the failure mechanisms and establishing a standardized troubleshooting workflow are therefore essential for ensuring test accuracy and minimizing downtime.
2?The Reverse Carnot Cycle and System Architecture
2.1?Cycle Theory
The reverse Carnot cycle comprises two isothermal and two adiabatic processes [2]. In a test chamber the cycle is decomposed into four stages:
(1) Adiabatic compression: low-pressure refrigerant vapour is compressed to high pressure and temperature;
(2) Isobaric heat rejection: superheated gas condenses in the condenser, transferring heat to the coolant medium (air or water);
(3) Adiabatic expansion: liquid refrigerant passes through a throttling device (capillary or electronic expansion valve) and experiences a sharp pressure and temperature drop;
(4) Isobaric heat absorption: low-pressure two-phase refrigerant evaporates in the evaporator, removing heat from the specimen and chamber walls before returning to the compressor.
2.2?System Configuration
A typical three-zone chamber consists of a hot zone, a cold zone and a specimen transfer basket. The refrigeration system is usually a two-stage cascade:
(1) High-temperature stage: R404A or R507 for precooling and medium-temperature holding;
(2) Low-temperature stage: R23 or R508B for deep cooling below ?55 °C;
(3) Switching devices: hot-gas-bypass solenoid valve, intermediate heat exchanger and check valves for inter-stage coupling and load matching.
3?Macroscopic Symptoms of Cooling Failure
3.1?Temperature Anomaly
When the set point is ?40 °C but the chamber remains above ?20 °C after 30 min and the cooling rate is <1 °C·min?1, insufficient capacity is diagnosed.
3.2?Pressure Anomaly
High-side pressure <1.0 MPa or negative low-side pressure indicates cycle imbalance. 3.3?Compressor Behaviour Motor current drops >20 % below rated value or the protector trips repeatedly.
4?Systematic Analysis of Failure Mechanisms
4.1?Compressor Faults
4.1.1?Electrical Factors
Voltage sags or harmonic distortion can erode contactor contacts and prevent coil pull-in; phase loss raises winding temperature and triggers the internal thermal protector.
4.1.2?Mechanical Factors
Wear of scroll tip seals, broken piston rings or increased crankshaft eccentricity reduce volumetric efficiency. Discharge temperature decreases while suction temperature increases—opposite to normal behaviour.
4.1.3?Lubrication Failure
Carbonized or emulsified refrigerant oil destroys the oil film; metal-to-metal contact leads to seizure. Oil level and colour observed through the sight glass provide early warning.
4.2?Refrigerant Anomalies
4.2.1?Leakage
Micro-cracks in welds, aged gaskets or cracked valve stems (especially of the hot-gas-bypass solenoid) cause gradual loss. When the charge falls below 80 % of design, evaporator superheat rises sharply and suction pressure collapses.
4.2.2?Ice and Dirt Blockage
Moisture >50 ppm forms ice crystals at the expansion orifice; particulate debris causes oil slugs. Both manifest as a sudden evaporator-pressure drop and frequent compressor cycling.
4.2.3?Non-condensables
Inadequate evacuation leaves residual air, raising condensing pressure and compressor power while lowering cooling rate.
4.3?Control System Faults
4.3.1?Sensor Drift
Ageing temperature or pressure sensors yield erroneous feedback, causing the PID algorithm to issue wrong commands.
4.3.2?Program Logic Error
If the hot-gas-bypass valve remains open during the low-temperature dwell, evaporating temperature rises and the set point cannot be maintained.
5?Diagnostic and Localization Procedure
5.1?Preliminary Checks
(1) Power: three-phase unbalance <2 %, no phase loss; (2) Display: log alarm codes and compressor run time; (3) Sight glass: continuous bubbles >5 s·min?1 indicate undercharge.
5.2?Combined Pressure–Temperature Test
Digital manifold gauges measure high- and low-side pressures. With ambient dry-bulb temperature, calculate subcooling (normal 3–5 K) and superheat (normal 6–8 K). Subcooling <2 K plus superheat >15 K indicates refrigerant shortage or expansion-valve misadjustment.
5.3?Infrared Thermography
Scan compressor shell, condenser outlet and evaporator inlet; abnormal temperature gradients reveal potential leaks or blockages.
5.4?Vacuum–Pressure Leak Test
After refrigerant recovery, pressurize with nitrogen to 1.8 MPa; pressure drop <0.03 MPa in 24 h is acceptable. If exceeded, locate leaks with an electronic halogen detector.
6?Preventive-Maintenance Strategy
6.1?Refrigerant Management
(1) Metered charging: refill to nameplate ±5 g using an electronic scale in closed-loop control;
(2) Moisture control: replace drier filters every 1000 h; target moisture <20 ppm. 6.2?Compressor Maintenance (1) Every 2000 h measure winding insulation with a 500 V megger (target >100 MΩ);
(2) Every 4000 h analyse oil; replace if acid number >0.05 mgKOH·g?1;
(3) Every 8000 h renew synthetic oil of identical grade as per OEM specification.
6.3?Valves and Piping Maintenance
(1) Replace the entire valve body when the solenoid stem shows cracks—welding repair is prohibited;
(2) Perform annual penetrant testing (PT) on stainless-steel brazed joints; repair cracks and re-solution-treat.
6.4?Control-Program Optimization
Implement “pressure–temperature dual-variable redundancy” in the PLC: if both temperature and pressure sensors indicate anomalies for >30 s, the system shuts down and outputs a fault code, avoiding false trips from single-sensor drift.
Cooling loss in thermal shock test chambers is usually the result of coupled compressor degradation, refrigerant-cycle anomalies and control-system faults. Using the reverse Carnot cycle as a theoretical framework, a three-dimensional fault tree (electrical–mechanical–refrigerant) reduces fault-location time to within 30 minutes. Standardized leak detection, metered charging, preventive replacement of critical parts and logic upgrades can raise the system MTBF from 4000 h to over 7000 h, providing sustained technical assurance for environmental reliability testing.

News Recommendation
Low-temperature test chambers are widely used in fields such as aerospace, automotive, home appliances, and scientific research.
High and low temperature test chambers have a lifespan from the moment they are produced.
In the whole lifecycle management of industrial equipme […]
If you find that the circulating water pressure in your thermal shock test chamber is insufficient, how should you resolve it? To address the issue at its root and prevent recurrence, we need to promptly identify and troubleshoot the problem based on the actual situation.
As we all know, UV aging test chambers are composed of many components. In fact, there are also some auxiliary accessories that may be used during the operation of the equipment. The use of these accessories can make the testing process smoother. Today, I would like to introduce several such accessories to you.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn
亚洲欧美电影一区二区_麻豆国产一区二区_免费高清在线一区_久久免费高清视频
久久综合色88| 这里是久久伊人| 狠狠久久五月精品中文字幕| 国产一区在线播放| 在线看欧美日韩| 亚洲精品一区久久久久久| 一区二区三区精品视频| 亚洲欧美日韩视频二区| 久久国产日本精品| 欧美激情在线观看| 国产精品v日韩精品| 国产手机视频一区二区| 亚洲国产欧美日韩另类综合| 夜夜爽夜夜爽精品视频| 欧美在线视频播放| 尤物99国产成人精品视频| 亚洲精品日韩在线观看| 亚洲欧美综合一区| 欧美超级免费视 在线| 国产精品久久国产愉拍 | 免费看黄裸体一级大秀欧美| 欧美理论视频| 国产一区二区三区久久精品| 亚洲精品乱码久久久久久| 午夜久久tv| 欧美人与性动交cc0o| 国产亚洲欧美日韩精品| 亚洲美女视频网| 久久精品人人做人人爽| 欧美日韩不卡一区| 韩国视频理论视频久久| 在线午夜精品自拍| 鲁大师影院一区二区三区| 国产精品久久久久一区二区三区共 | 男男成人高潮片免费网站| 国产精品乱码| 亚洲精品少妇网址| 久久久久成人精品| 国产精品美腿一区在线看 | 红桃av永久久久| 亚洲亚洲精品三区日韩精品在线视频| 麻豆精品视频在线观看| 国产美女高潮久久白浆| 夜久久久久久| 欧美成人官网二区| 国内偷自视频区视频综合| 亚洲一级黄色av| 欧美日本韩国| 亚洲黄色成人久久久| 久久久夜色精品亚洲| 国产女主播一区二区三区| 一区二区三区高清| 欧美极品在线视频| 亚洲国产精品一区二区www在线 | 国产精品任我爽爆在线播放| 亚洲精品乱码久久久久久久久| 久久久久久久久一区二区| 国产精品亚洲美女av网站| 宅男精品导航| 欧美色视频在线| av成人黄色| 欧美日本不卡高清| 亚洲精选在线观看| 欧美成人亚洲| 亚洲国产影院| 女同性一区二区三区人了人一| 国内精品久久久久影院色| 香蕉成人久久| 国产精品区一区二区三区| 亚洲永久网站| 国产精品欧美在线| 亚洲欧美日韩区| 国产日韩精品视频一区二区三区 | 欧美久久影院| 亚洲免费观看在线视频| 欧美激情亚洲视频| 亚洲欧洲精品成人久久奇米网| 久热综合在线亚洲精品| 一区二区三区在线视频观看 | 欧美精品v日韩精品v国产精品| 亚洲国产成人在线视频| 免费成人美女女| 亚洲国产另类久久精品| 欧美黑人在线播放| 99国产精品| 欧美性一二三区| 亚洲欧美一区二区视频| 国产精品一区二区三区四区| 午夜电影亚洲| 国模一区二区三区| 久久综合亚洲社区| 亚洲人成高清| 欧美日韩在线播放三区| 亚洲丝袜av一区| 国产女主播视频一区二区| 久久国产精品黑丝| 在线免费观看日本一区| 欧美本精品男人aⅴ天堂| 亚洲精品在线视频观看| 欧美日韩综合网| 亚洲欧美日韩直播| 黑人操亚洲美女惩罚| 久久综合九色99| 亚洲精品免费看| 国产精品高潮呻吟久久av黑人| 亚洲欧美制服另类日韩| 国产自产女人91一区在线观看| 久久久另类综合| 亚洲欧洲日产国产网站| 欧美日韩一区二区在线视频| 亚洲欧美另类国产| 狠狠综合久久av一区二区老牛| 榴莲视频成人在线观看| 一本色道久久| 国产日韩欧美日韩大片| 麻豆精品在线观看| 亚洲最黄网站| 国际精品欧美精品| 欧美福利精品| 亚洲影音一区| 一区二区三区在线视频免费观看| 欧美va亚洲va香蕉在线| 亚洲视频精选| 激情欧美一区二区三区| 欧美久久一区| 欧美在线电影| 亚洲精品视频二区| 国产美女精品| 欧美国产日本| 亚洲欧美日韩中文视频| 在线观看日韩专区| 欧美系列电影免费观看| 久久国产精品99久久久久久老狼| 亚洲人成高清| 国产私拍一区| 欧美伦理91i| 久久精品一区二区| 一本色道久久99精品综合| 国产一区二区三区直播精品电影| 欧美激情一区二区三区蜜桃视频 | 伊人成年综合电影网| 欧美视频导航| 六月婷婷一区| 亚洲欧美日韩国产精品 | 久久婷婷一区| 亚洲一区免费网站| 亚洲国产一成人久久精品| 国产精品一香蕉国产线看观看| 欧美sm视频| 久久成人18免费网站| 一区二区三区视频在线看| 在线不卡a资源高清| 国产精品蜜臀在线观看| 欧美成人精品在线| 久久精品国产77777蜜臀| 一区二区精品在线观看| 影音先锋久久资源网| 国产精品丝袜xxxxxxx| 欧美国产一区视频在线观看| 欧美在线精品免播放器视频| 99精品国产99久久久久久福利| 黑人巨大精品欧美一区二区小视频| 欧美日本中文| 蜜桃av一区| 久久国产视频网站| 亚洲欧美999| 99在线精品视频| 在线免费精品视频| 国产一区二区三区四区在线观看 | 伊人夜夜躁av伊人久久| 国产免费观看久久| 欧美四级在线观看| 欧美精品v国产精品v日韩精品| 久久婷婷久久| 欧美在线网址| 亚洲欧美综合| 亚洲天天影视| 一区二区三区国产在线| 亚洲人成网站精品片在线观看| 国内视频一区| 国产一二精品视频| 国产毛片一区二区| 国产精品日韩| 国产精品国产亚洲精品看不卡15 | 欧美高清在线精品一区| 久久综合影音| 久久久久国色av免费观看性色| 午夜伦欧美伦电影理论片| 中文精品视频| 99精品欧美| 日韩系列欧美系列| 亚洲精品自在久久| 亚洲精品欧美激情| 亚洲精选一区二区| 日韩性生活视频| 99精品欧美| 亚洲调教视频在线观看| 亚洲午夜国产一区99re久久| 99精品欧美一区二区蜜桃免费| 99热在线精品观看| 亚洲天堂av图片| 亚洲一区亚洲| 西西人体一区二区| 久久av一区二区三区|